

GREEN (ENVIRONMENT) AUDIT REPORT

RAYAT SHIKSHAN SANSTHA'S

DR BABASHAEB AMBEDKAR MAHAVIDYALAYA

85, Sarkar Wada, Ward No: 8

Audh Gaon, Pune-411 067, Maharashtra

Phone No: 020 25466271/73

E-mail Id: bdbacollege@gmail.com

Website: https://www.dbacap.edu.in/

Conducted and Submitted by

ENERFUTURE TECHNOLOGY PRIVATE LIMITED

301, Above Ekbote Hospital, Revenue Colony, J.M.Road,

Pune-411005

Website: http://www.ienerfuture.com

E-mail: info@ienerfuture.com

Telephone: +91- 9960041642, 9405065597

CERTIFICATE

ENERFUTURE TECHNOLOGY PRIVATE LIMITED Verified and Certified that

RAYAT SHIKSHAN SANSTHA'S

DR BABASHAEB AMBEDKAR MAHAVIDYALAYA

"85, Sarkar Wada, Ward No: 8

Audh Gaon, Pune-411 067, Maharashtra

Phone No: 020 25466271/73

E-mail Id: bdbacollege@gmail.com

Website: https://www.dbacap.edu.in/

HAS CARRIED OUT

GREEN AND ENVIRONMENT AUDIT

AS PER GUIDANCE LAID DOWN IN THE INDIAN STANDARDS AND CODES IN 2019-20

This certificate is valid for 2 years from 2019-20 and 2020-21

Vinay Mulay

M.Tech (Energy Studies), Certified BEE Energy Auditor (EA-10853), Lead Auditor-ISO-50001

Chetan Nemade

M.Tech (Energy Studies), Advance Diploma in Industrial Safety (ADIS), BEE Certified Energy Manager (EA-22697)

Yogesh Kuwar

M.Tech (Energy Studies), Certified BEE Energy Manager (EA-33078), PGDELP, IGBCTM AP-AA02EEK7

www.ienerfuture.com

ACKNOWLEDGEMENT AND CONCEPT

Enerfuture Technology thanks the management of Dr Babasaheb Ambedkar Mahavidyalaya College, Pune for assigning this important work of Green Audit of Dr Babasaheb Ambedkar Mahavidyalaya College, Pune

Green audit is defined as a formal examination of practices adopted and their effects on the environment, by an organization. It is also widely known as Environmental Audit.

The aim of the Green Audit is to review the overall environment management systems. Depending on the types of standards and the focus of the audit, there are different types of environmental audits.

Organizations now recognize the importance of environmental matters and accepts that their environment performance should be scrutinized to understand its impact and to take remedial measures to lessen it.

Environmental auditing is used to:

- 1. Investigate
- 2. Understand and
- 3. Identify

These are then used to help in improving existing human activities, with the aim of reducing the adverse effects of these activities on the environment.

An environment auditor studies an organization's environment effects in a systematic and documented manner and produces an environmental audit report.

Green audit for an educational institution mainly examines the following systems

- 1. Renewable/ green energy usage
- 2. Water management
- 3. Biodiversity
- 4. Health and safety management
- 5. Sanitation management
- 6. Adopted Green practices

Contribution of college's team is equally important in this venture. Team of technical experts from Enerfuture Technology Private Limited is grateful to all the following personnel of Dr Babasaheb Ambedkar Mahavidyalaya College, Pune for their kind cooperation, furnishing required data, analysis report and support offered during our visit.

Name	Designation
Dr. Arun Andhale	Principal
Dr Ramesh Randive	Vice-Principal
Dr Rajendra Rasakar	Assistant Professor
Prof Sushilkumar Gujar	Assistant Professor
Dr Savita Patil	IQAC Coordinator

We are also thankful to the other staff members who were actively involved while taking measurements and conducting field study.

STUDY TEAM

Sr No	Name	Qualification
1	Mr. Chetan Nemade	M.Tech (Energy Studies), Advance Diploma in Industrial Safety (ADIS), LLB(pursuing), BEE Certified Energy Manager
2	Mr Vinay Mulay	M.Tech (Energy Studies), ISO 50001 Lead Auditor, BEE Accredited Energy Auditor
Mr Swapnii Gaikwad Certified M.Tech Mr YogeshKuwar Environ		M.Tech (Energy Studies), ISO 50001 Lead Auditor, BEE Certified Energy Auditor
		M.Tech (Energy Studies), IGBC, Post Graduate Diploma in Environmental law and Policy (PGDELP), BEE Certified Energy Manager
5	Mr Swapnil bedre	BE Mechanical

LIST OF INSTRUMENTS USED

- 1. Lux meter (Meco)
- 2. TDS meter
- 3. CO2 meter
- 4. Air quality measure meter
- 5. Sound dB meter

CONTENTS

EXCECUTIVE SUMMARY	8
COLLEGE INTRODUCTION	11
INTRODUCTION	11
SILENT FEATURES OF THE COLLEGE	12
MISSION	12
VISSION	12
OBJECTIVES	13
LOCATION	14
RENEWABLE ENERGY SYSTEMS	15
1. SOLAR PHOTOVOLTAIC SYSTEM- ELECTRICAL ENERGY GENERATION	15
OBSERVATION	15
EXISTING SOLAR PV SYSTEM IN COLLEGE PREMISES	15
PROPOSED SOLAR PV SYSTEM IN COLLEGE PREMISES	17
2. SOLAR WATER HEATING SYSTEM- HOT WATER GENERATION	20
OBSERVATION	20
WASTE MANAGEMENT SYSTEMS	22
1. COMPOSTING	22
OBSERVATION	22
2. BIO-GAS GENERATION	24
OBSERVATION	24
RECOMMENDATION	24
SAVINGS MEASURES	25
SAVINGS DUE TO BIO GAS PLANT	25
WATER QUALITY AND MANAGEMENT SYSTEMS	26
1 TOS LEVEL OF WATER	26

INTRODUCTION	26
OBSERVATION	27
OBSERVATION	27
2. RAIN WATER HARVESTING- COLLEGE PREMISES	28
OBSERVATION	28
3. WATER TAP REDUCER	29
OBSERVATION	29
RECOMMENDATION	29
AIR QUALITY	30
INTRODUCTION	30
OBSERVATION	31
SOUND COMFORT/QUALITY	37
INTRODUCTION	37
OBSERVATION	38
DAY LIGHT ILLUMINATION/COMFORT	41
INTRODUCTION	41
OBSERVATION	41
HEALTH AND SAFETY MANAGEMENT AND INFRASTRUCTURE	45
COLLEGE INFRASTRUCTURE	45
INTRODUCTION	45
OBSERVATION	45
ASSESSMENT OF COLLGE CAMPUS BUILDING INFRASTRUCTURE	46
2. HEALTH AND SAFETY MANAGEMENT	47
OBSERVATION	47
GENERAL RECOMMENDATIONS	54
NO VEHICLE DAY INITIATIVE	55

OBSERVATION	55
RECOMMENDATION	57
OTHER ENERGY EFFICIENT, GREEN, HEALTH, WASTE PRACTICES BY THE COLLEGE MANAGEMENT S	58
1. SOLID WASTE MANAGEMENT (SCRAPS LIKE PLASTIC, PAPER ETC)/ E- WASTE MANAGEMENT CLEANILNESS DRIVE/CAMPAIGN	-
INTRODUCTION	58
E-WASTE MANAGEMNT	58
OBSERVATION	59
2. TREE PLANTATION, SOIL CONSERVATION ETC	63
INTRODUCTION	63
OSERVATION	63
3. ENERGY EFFICIENT TECHNIUES	65
INTRODUCTION	65
OSERVATION	65
REFERENCES AND STANDARDS	67

EXCECUTIVE SUMMARY

Sr No	Location	Area	Objective/Purpose	Recommendation/Status
1	College building	Solar Photovoltaic System- 5kWp	To generate electrical energy by renewable sources and reduce the CO2 emissions	Implemented
2	Girl's hostel building	Solar Photovoltaic System- 15kWp	To generate electrical energy by renewable sources and reduce the CO2 emissions	Implemented
3	College campus	Composting	Reduces the landfill pollution and green- house gases reduction. Also produce bio- fertiliser compost to trees in the college campus	Implemented
		Tap water reducers	To save the water	Can be implement
4	All buildings of college	Hands free water tap system	This saves the water and also good for personal health protection to avoid frequent hand touching to water taps.	Can be implement
5	College buildings	Rain water harvesting	Save water. Increases the groundwater recharge.	Implemented

6	College buildings/campus	Air Comfort/ Quality	Air quality for human being comfort	Aspirational			
7	College buildings/campus	Sound Comfort/ Quality	Sound quality or comfort for human being comfort	Within permissible limits			
8	College buildings/campus	Daylight Comfort/Illumination	Daylight illumination for human being comfort	Within permissible limits			
			Electrical safety- electrical wiring, connections etc	Need to be improve			
9 Colleg		Health and Safety Management	Electrical safety- unwanted materials are placed in electrical panel rooms	Need to be remove			
	College buildings/campus		Health and Safety Management	Health and Safety Management	Health and Safety Management	Health and Safety Management	mpus Health and Safety Management Fire safety- number of fire extinguishers are placed in college campus
			Fire safety- Regularly maintenance of fire extinguishers.	Good			
		Unwanted material placed in college campus	Need to place properly				
10	College buildings/campus	No vehicle day	Save the conventional fuel and reduces the CO2 emissions.	Implement on each 1t of every week			
11	College buildings/campus	Waste management- E-waste	Reduce the CO2 emissions by recycling of solid waste. Also Save environment from hazardous materials.	Implemented by signing MOU with E-waste management company and doing regular drives			

12	College buildings/campus	Waste management- Solid waste	Reduce the CO2 emissions by recycling of solid waste	Regularly implemented and maintained every month.
15	College buildings/campus	Tree plantation/ Green belt cover	To increase the forest cover. Reduce the Air, Noise pollution, reduce CO2 emissions etc	Regularly implemented every year
16	College buildings/campus	Cleanliness drive and awareness campaign or poster competitions etc	Swatch Bharat Mission (SBM), Swatch Bharat Abhiyan (SBA), or Clean India Mission etc initiative by college	Regularly conducted by college
17	College buildings/campus	Plastic free campaign	Save environment from non-recycling and hazardous materials.	Taken regular drive n subject
18	College buildings/campus	Energy efficient or Innovative techniques	LED lightings, Motion sensor lightings, VRV system for cooling purpose, directions of windows etc	Good initiative

COLLEGE INTRODUCTION

INTRODUCTION

Rayat Shikshan Sanstha Satara

"Education through self-help is our motto."

This college is a grant-in-aid institution affiliated to Savitribai Phule Pune University. It has been established in 1983 and included under sections 2(f) and 12(B) of the UGC Act and has been receiving grants regularly. College is re-accredited with B++ Grade with CGPA of 2.76 by NAAC in 2017. The college offers courses like B.A., B.Com, B.B.A. (Computer Application), B. Voc. (Retail Marketing and Management) M.A. Economics, M.A. Marathi and M. Com. Along with academic programs college also offers two COC and twenty seven skill and job oriented courses. The college has received several grants for Major and Minor Research projects from UGC and Savitribai Phule Pune University. The College also pays equal attention to faculty improvement and research. College has well qualified and research oriented faculty out of 13 permanent faculty, eight are with Ph.D. and two with M.Phil. and three are doing Ph.D. Almost all faculty members have completed major or minor research projects. College has organized 27 seminars and conference and 47 workshops. Several support services are provided to the students like ladies hostel, NSS, sports, YCMOU, cultural unit etc. Several support services are provided to the students like ladies hostel, NSS, sports, YCMOU, cultural unit etc. The college also publishes its annual magazine 'Aksharkumaya', wall paper 'Aksharrang', hand written 'Vanijyavishwa' and 'Arthwishwa', book reviews and Newsletters. Majority of the students are from rural and slum area. They belong to economically and socially backward classes. To cop up with the new atmosphere, we organize orientation remedial, special guidance scheme, bridge courses, counselling and computer courses for students. College was

awarded with Karmveer Paritoshik by Rayat Shikshan Sanstha, Jagnnath Rathi award for extension activities by Savitribai Phule Pune University, Savitribai Phule Best Sanstha by Rashtriya Bandhuta Parishad.

SILENT FEATURES OF THE COLLEGE

- A Branch of Rayat Shikshan Sanstha which was founded by a great visionary Padmabhushan Dr. Karmveer Bhaurao Patil.
- Affiliated to Savitribai Phule Pune University, Pune.
- Accredited by NAAC with 'B++' Grade with CGPA of 2.76 by NAAC in 2017.
- Best college Award by Rayat Shikshan Sanstha.
- NSS Best College Unit Award by SPPU.
- Jaggnath Rathi Award for social awareness by Savitribai Phule Pune University, Pune.
- Adequate infrastructure with specious classroom.
- Language Laboratory.
- Commerce Laboratory.
- Computer Laboratory.
- Adequate IT infrastructure.
- Well qualified and dedicated teaching faculty.
- Twenty-seven skill and job-oriented courses.
- Excellent organization seminars and workshops.
- Competitive Examination Guidance Centre.
- Banking Examination guidance Centre.
- Police Pre-recruitment Training Centre.
- Ladies hostel facility.
- Automated Library with library website and Institutional Repository for e-collection.
- National players.
- Good Research culture.

MISSION

We are committed to educate educationally, socially and economically backward people and bring about a positive change among them and thereby serve the nation.

VISSION

To impart quality education too socially, economically and educationally downtrodden through self-help and bring them in the main stream of the nation.

OBJECTIVES

- To generate physically, spiritually and academically sound, young, properly motivated graduates who know the importance of social and civil responsibilities.
- To develop the overall personality of students.
- Education through self-help and dignity of labour
- To educate socially and economically backward students.
- To promote women education.
- To promote the research activities.
- To have interaction with the society through co-curricular activities to acquaint the basic needs and problems.

LOCATION

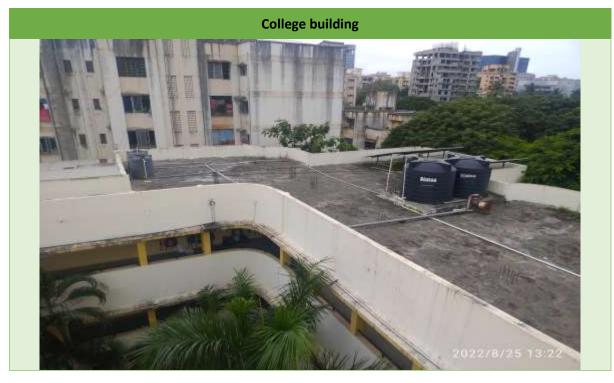
RENEWABLE ENERGY SYSTEMS

1. SOLAR PHOTOVOLTAIC SYSTEM- ELECTRICAL ENERGY GENERATION

OBSERVATION

- 1. In college premises, there are two Solar Photovoltaic Systems are installed for the purpose of kWh units generation
- 2. Total capacity of Solar Photovoltaic System is 15kWp and 5kWP respectively.
- 3. Current average energy consumption of the college is 1600 kWh per month.
- 4. College still has huge rooftop space available for Solar PV system to expand up to 14kWp

EXISTING SOLAR PV SYSTEM IN COLLEGE PREMISES



Existing Solar PV system			
Total capacity of Solar PV system	20	kWp	
Units generation per month	2250	kWh/month	
Units generation per year	27000	kWh/year	
CO2 emission reduction/year	22.95	tonnes of CO2e	

PROPOSED SOLAR PV SYSTEM IN COLLEGE PREMISES

Savings due to Solar PV system additional			
Total Rooftop space available- approximate	2857	sqfoot	
Average energy consumption of main college building	1600	kWh/month	
Total capacity of Solar PV system can be installed	14	kWp	
Total solar unit generation	1575	kWh/month	
Average electricity unit rate	11.16	INR/kWh	
Total cost of Solar PV system	630000	INR	
Total saving	17577	INR/month	
Payback period	35.84	months	
Payback period	2.99	year	
CO2 emission reduction/year	16.07	tonnes of CO2e	

2. SOLAR WATER HEATING SYSTEM- HOT WATER GENERATION

OBSERVATION

- 1. In Girl's hostel, there is Solar Water Heating system is installed for the purpose of water heating instead of electric heaters.
- 2. Total capacity of Solar Water Heating system is 1000 litres/day.
- 3. Auxiliary heaters are not used in solar water heating system in the morning.

Solar water heater saving			
Particulars			
Hot water temperature	60	deg C	
Cold water temperature	25	deg C	
Temperature difference(delta T)	35	deg C	
Volume of water	1000	lit	
Volumetric flow	1000	lit/day	
Hot water temperature	60	deg C	
Enthalpy of cold water	25.04	kcal/kg	
Enthalpy of Hot water	60	kcal/kg	
Enthalpy difference	34.96	kcal/kg	
Amount of heat used	34960	kcal	
Power used for heating	40.65	kW	
Monthly kWh	1239.86	kWh/month	
Saving kWh	1239.86	kWh/month	
Saving kWh	14878.33	kWh/year	
Saving INR	15175.89	INR/month	
CO2 emission reduction/year	12.65	tonnes of CO2e	

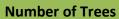
WASTE MANAGEMENT SYSTEMS

1. COMPOSTING

OBSERVATION

- 1. In college premises there are number of trees are planted by college management.
- 2. College also maintain every tree in the premises.
- 3. There is substantial amount of waste of tree leaves, shrubs are generated in the college premises.
- 4. In existing college have compost pits to generate compost from these generated waste.

Number of Trees



Number of trees in the college premises

Number of trees in the college premises

Number of Trees

Number of trees in the college premises

Number of trees in the college premises

Compost pits

Compost pits

Compost pits in college premises

Compost pits in college premises

2. BIO-GAS GENERATION

OBSERVATION

- 1. In the college canteen approximately 10kg kitchen waste is generated daily.
- 2. Currently there is no any bio gas plant for generation of bio gas in the college.

RECOMMENDATION

- 1. It is recommended that installed the small capacity of bio gas plant at college canteen and girl's hostel for production of bio gas from kitchen waste generated daily.
- 2. Produced bio gas can be used for small purposes in the canteen instead of LPG which saves monthly approximate 1 cylinder of INR 1,500/-

SAVINGS MEASURES

SAVINGS DUE TO BIO GAS PLANT

Saving due to Bio gas plant		
Capacity of bio gas plant	10	kg/day
Waste generated	10	kg/day
Approximate bio gas generation	1	m3/day
Approximate bio gas generation	30	m3/month
Equivalent LPG gas saved	12	kg/month
Approximate LPG cylinder saved	1.0	nos
Cost saved	1500.00	INR/month

WATER QUALITY AND MANAGEMENT SYSTEMS

1. TDS LEVEL OF WATER

INTRODUCTION

The water we drink contains essential salts and minerals like calcium, potassium and magnesium, besides hydrogen and oxygen.

These minerals make up the acceptable levels of TDS (Total Dissolved Solids). Besides, these minerals, the source water contains heavy impurities like arsenic, antimony, lead, iron, etc. It also includes carbonates, fluorides, sulphides and other salts picked along the way. These contaminates enhance the TDS levels to unacceptable levels.

BIS (Bureau of Indian Standards) determines the TDS acceptability levels in drinking water. In India, drinking water can contain TDS up to 500 ppm. BIS has constituted the following table that could clarify the matters further.

TDS level (PPM)		Reasons for acceptability or non-acceptance
less than 50	Unacceptable	The water with these TDS level does not contain the minerals required for healthy growth
50 - 150	Acceptable	Such TDS levels are usually due to minor industrial contamination
150 - 250	Acceptable	BIS considers water with this TDS levels as the healthiest of all because it is excellent for cardiovascular health
250 - 350	Acceptable	Many areas in India depends on groundwater or bore wells for their water requirements. This water contains essential minerals hence is in acceptance range
350 - 500	Fair	The maximum TDS levels acceptable for human consumption is 500
above 500 - 1200	Not Acceptable	BIS does not recommend ant TS level above 500 as fit for human consumption. However, water with TDS levels up to 1200 can be subjected to purification using Reverse Osmosis(RO) technology to eliminate TDS and bring it down to acceptable levels

OBSERVATION

- 1. Drinking water requirement of college is fulfil by PMC (Pune Municipal Corporation) water.
- 2. Domestic water requirement of college is fulfil by well in the college.
- 3. UV system is installed in the college for purification of well water.
- 4. TDS level of drinking water and domestic water as

TDS level of water

Drinking water	Domestic water		
√- Not Acceptable	√- Acceptable		

	TDS	Acceptability
	ppm	
Drinking water	28	Not Acceptable
Domestic water	281	Acceptable

OBSERVATION

It is recommended that mixed small % ground water (after detailed water analysis) in drinking water to maintained TDS of drinking water above 50 ppm.

2. RAIN WATER HARVESTING- COLLEGE PREMISES

OBSERVATION

- 1. College have number of rain water recharge pits in the college premises to increase the groundwater recharge.
- 2. College also has taken initiative to expand rain water harvesting system.

Rain water harvesting system in college premises

3. WATER TAP REDUCER

OBSERVATION

- 1. College has conventional water tap system in the area like bathrooms, toilets etc.
- 2. Conventional water tap system consumes or requires more water for the purpose of washings, cleanings etc.

Conventional Tap water system

Tap water system with Reducer

Existing tap water system uses more water while during purpose of washing of utensils, hands etc in college.

Used reducer to tap water for purpose of washing of utensils, hands etc which reduces flow of water and ultimately saves the water.

٧

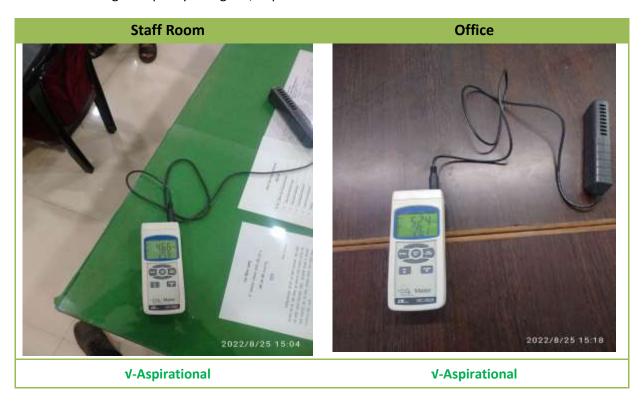
RECOMMENDATION

It is recommended that use the water reducer for water taping system. This helps saving the volume of water and subsequently energy cost of pumping also.

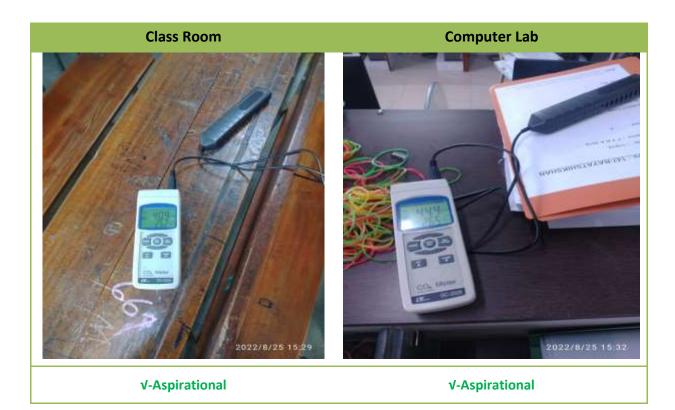
AIR QUALITY

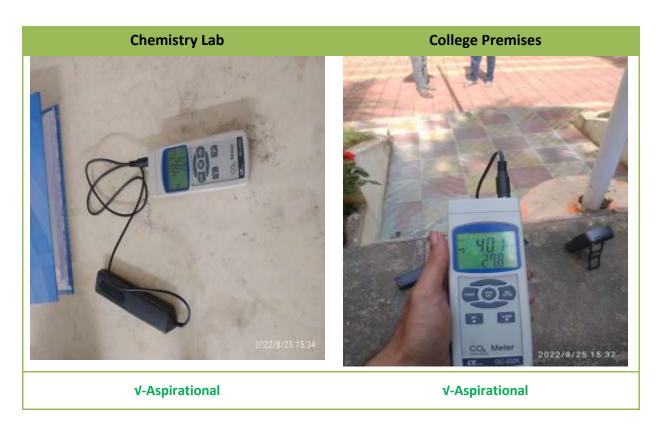
INTRODUCTION

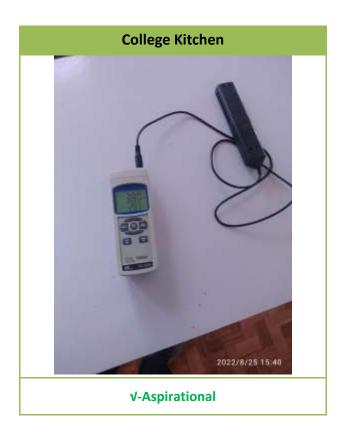
Indoor air is considered to be healthy when the air does not contains contamination in harmful concentrations and is acceptable when the majority of people feel satisfied. A human being breathes about 12,000 litres of air every day and is vital for our health. Exposure to hazardous airborne agents present in indoor space causes adverse effects such as respiratory and cardiovascular diseases, allergy and irritation of the respiratory tract and possibly leads to cancer.


Main source of indoor air pollutants are from outdoor air, household cooking (especially cooking with biomass or frying), tobacco smoking, polluted ambient air, cleaning agents, resuspension of dust during the cleaning activities, construction materials and paints, copy machines and printers as well as other human activities. Ambient air pollutant sources are vehicle emissions, thermal power plants, biomass burnings, construction work, unattended debris, open sewage pipes, fossil fuel based power generation and various industrial processes etc.

Threshold values for indoor air quality parameters							
Parameters							
	Class A	Class A Class B Class C					
Level	Aspirational	Acceptable	Marginally acceptable				
CO2	Ambient+350	Ambient+500	Ambient+700	ppm			
PM2.5	<15	<25	<25	ppm			
PM10	<50	<100	<100	ppm			
НСНО	30			ppm			
TVOC	<200	<400	<500	ppm			
Occupational satisfaction	90	80	-	%			


OBSERVATION


1. In college air quality is at good/ aspirational level.



Location	CO2	PM2.5	PM10	нсно	TVOC	Level
	ppm	ppm	ppm	ppm	ppm	
Staff Room	446	4	4	0	40	Aspirational
Office	524	6	6	7	183	Aspirational
Passage	472	5	5	7	178	Aspirational
Library	463	5	5	7	192	Aspirational
Class Room	409	5	5	4	66	Aspirational
Computer Lab	444	5	5	21	85	Aspirational
Chemistry Lab	482	10	11	9	72	Aspirational
College Premises	401	5	5	4	1	Aspirational
College Kitchen	380	5	5	7	3	Aspirational

SOUND COMFORT/QUALITY

INTRODUCTION

Noise is unwanted sound. Ambient noise is all encompassing noise associated with any given environment and is usually a composite of sounds from many sources near and far. Any abnormal sound which irritates human being is called as noise pollution.

Noise is one of the undesirable products of technological civilization. Admits this civilization wherever we go, noise surrounds us. The roar of traffic, the passage of trains and aeroplanes, the bustle of crowds and the working of industry and the public utilities deafens our ears. Even home is invaded by noise. The noise from whatever source it comes from is undoubtedly, physiologically as well as psychologically harmful. Invading environment in dangerous proportions, it is an invisible but insidious form of pollutant Noise as a potentially harmful pollutant is being recognised as a great nuisance these days affecting the quality of the particularly, in urban areas.

The Environment (Protection) Act, 1986, under Sec. 6 has mentioned "Rules to regulate environment (Protection) Act, 1986, under Sec. 6 has mentioned "Rules to regulate environmental pollution". This section has explained the maximum allowable limits of concentrations of various environmental pollutants (including noise) for different areas.

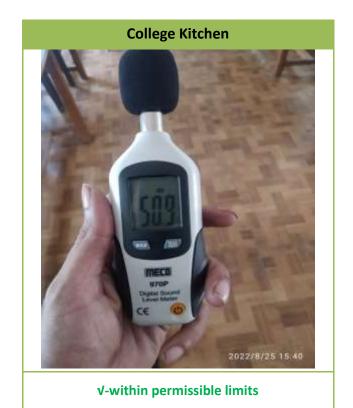
Air quality standards in respect of Noise			
Area code	Category of Area/ Zone Limits/Levels		ts/Levels
			Night Time
Α	Industrial area	75	70
В	Commercial area	65	55
С	C Residential area		45
D	Silence zone	50	40

V-within permissible limits

V-within permissible limits

Chemistry Lab

College Premises



V-within permissible limits

V-within permissible limits

Location	Limits	Limits/Levels
Location	dB	
Staff Room	64.8	Within permissible limits
Office	59.7	Within permissible limits
Passage	57.7	Within permissible limits
Library	61.8	Within permissible limits
Class Room	50	Within permissible limits
Computer Lab	49	Within permissible limits
Chemistry Lab	44.4	Within permissible limits
College Premises	53.4	Within permissible limits
College Kitchen	50.9	Within permissible limits

DAY LIGHT ILLUMINATION/COMFORT

INTRODUCTION


Light has significant impact on many body functions, including the nervous system, circadian rhythms, pituitary gland, endocrine system, pineal gland and alertness as these are affected by different wavelengths of light.

Variations over time in lighting conditions, in terms of intensity, illumination levels, distribution, ambient lighting and colour temperature, can stimulate alertness and well-being of people.

Threshold IL luminance level			
Building type	Building type Type of space		
		Lux	
	Classrooms	500	
	Corridors	100	
Schools	Teachers rooms	300	
	Libraries	500	
	Offices	300	

Chemistry Lab College Premises NA NA V-within permissible limits

Location	IL luminance	Limits/Levels
Location	lumens	
Staff Room	*382	Within permissible limits
Office	*304	Within permissible limits
Passage	*1087	Within permissible limits
Library	*257	Within permissible limits
Class Room	*191	Within permissible limits
Computer Lab	*257	Within permissible limits
Chemistry Lab	*153	Within permissible limits
College Premises	-	Within permissible limits
College Kitchen	*85	Within permissible limits

HEALTH AND SAFETY MANAGEMENT AND INFRASTRUCTURE

1. COLLEGE INFRASTRUCTURE

INTRODUCTION

College campus comprises of various buildings as main college building, girl's hostel, college canteen, parking area, central playing ground and number of underground water tank bodies for storage of water.

Sr. No.	Locations	Space
1	College building	Spacious
2	Staff rooms	Spacious
3	3 Laboratories Spacious	
4	Toilet Blocks	Spacious
7	Parking Area	Spacious
8	Passage	Spacious
9	Class rooms	Spacious
10	Staircase	Spacious
11	College premises	Spacious

ASSESSMENT OF COLLGE CAMPUS BUILDING INFRASTRUCTURE

Sr No	Locations	Space	Ventilation	Natural Light	Cleanliness	Remark
1	College building	Spacious	Good	Good	Good	-
2	Staff rooms	Spacious	Good	Good	Good	-
3	Laboratories	Spacious	Good	Good	Good	-
4	Toilet Blocks	Spacious	Good	Good	Good	-
5	Parking Area	Spacious	Good	Good	Good	-
6	Passage	Spacious	Good	Good	Good	-
7	Class rooms	Spacious	Good	Good	Good	-
8	Staircase	Spacious	Good	Good	Good	-
9	College premises	Spacious	Good	Good	Good	-
10	College building	Spacious	Good	Good	Good	-
11	Staff rooms	Spacious	Good	Good	Good	-

2. HEALTH AND SAFETY MANAGEMENT

- 1. Regular cleaning of college campus and toilets is done by the cleaning staff. This involves dusting, floor cleaning and toilets cleanings.
- 2. Garden and parking area is also kept clean by staffs.
- 3. Cleaning equipment and washing liquids are provided to the cleaning staff.
- 4. Gloves, masks like sanitation gear have been provided to the staff.
- 5. In college premises audit team found the unwanted materials.
- 6. There are number of fire extinguishers are placed in college campus building for fire safety purpose. College also doing regular maintenance and installed new fire extinguishers.
- 7. Open wiring and not properly addressed cable wiring have been observed in college, that may lead to short circuits as well as from electrical safety it is dangerous. Also panel doors are not closed properly. So it is an urgent repair and corrected.

Fire safety

Fire Extinguishers

Validity of Fire extinguishers

College has placed number of fire extinguishers at various places in the college campus

Maintenance validity of fire extinguishers I updated regularly.

√- Good

√- Good

Fire safety Certificate

MAHARASHTRA GOVT. APPROVED AGENCY

TRIANGLE FIRE

FIRE SAFETY & SECURITY ENGINEERS

Reg. Office: - S. No. 13/1/15, Spicer College Rd, Shitole Nagar, 47/1/244/2, Old Sangavi, Pune, Maharashtra 411027 Mob: - +91966956670, +919890059950,

Email: trianglefire4@gmail.com Website: www.trianglefires.com

HPT. /REFILLING & INSPECTION OF FIRE FIGHTING EXTINGUISHER EQUIPMENT

CERTIFICATE

Mr. / Mrs : Dr. Babasaheb Ambedkar College, Aundh, Pune,

Maharashtra 411067

Type of the Extinguisher : ABC Stored Pressure

Capacity : 4 KG & 6 KG No. of Fire Extinguisher : 05 NOS & 06 NOS

Date of Installation : 02/08/2022

Next Due Date : 01/08/2023

Parts in Fire Extinguisher

Pressure Filled f) Powder

) Yellow Seal g) Safety Clip) Washer h) Inner Container Siphon Tube

Hose Pipe I) Plunger Mechanism Squeeze Grip j) Warranty Sticker

CONDITION OF THE FIRE EXTINGUISHER: New Installed

Note: - One Year Warranty Only Automatic Pressure Drop.

Dated : 02/08/2022

Authorized Seal / Signature

College has done fire extinguisher maintenance and also newly installed

V- Well maintained

Fire safety Certificate

MAHARASHTRA GOVT. APPROVED AGENCY

TRIANGLE FIRE

FIRE SAFETY & SECURITY ENGINEERS

Reg. Office: - S. No. 13/1/15, Spicer College Rd, Shitole Nagar, 47/1/244/2, Old Sangavi, Pune, Maharashtra 411027

Mob: - +91966956670, +919890059950,

Email: trianglefire4@gmail.com Website: www.trianglefires.com

HPT. /REFILLING & INSPECTION OF FIRE FIGHTING EXTINGUISHER EQUIPMENT CERTIFICATE

Mr. / Mry : Dr. Babasaheb Ambedkar College, Aundh, Pune,

Maharashtra 411067

Type of the Extinguisher : ABC Stored Pressure

Capacity : 4 KG No. of Fire Extinguisher : 07 NOS

Date of Refilling / Servicing: 02/08/2022

Next Due Date : 01/08/2023

SPARES REPLACED

a) Pressure Filled

b) Yellow Seal Replaced

c) Washer Changed

d) Hose Checked

e) Squeeze Grip

f) Powder Replaced

g) Safety Clip

h) Inner Container Clean

Plunger Mechanism

j) Sticker Replaced

CONDITION OF THE FIRE EXTINGUISHER: VERY GOOD

Note: - One Year Warranty Only Automatic Pressure Drop.

Dated : 02/08/2022

Dune ;

Authorized Seal / Signature

College has done fire extinguisher maintenance and also newly installed

√- Well maintained

Electrical safety

Unwanted material

Unwanted material

Unwanted waste material placed near electrical panel

Unwanted waste material placed near electrical panel

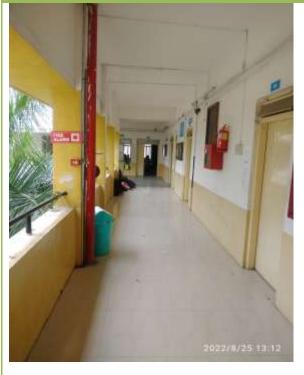
⋈- need to be clean

⊘- need to be clean

Electrical safety Ladder for terrace

Electrical safety Electrical panel door lock

Unwanted waste material placed near electrical panel


⋈- need to be clean

\omega- need to be clean

Health safety

Dust bins for waste disposal

Dust bins for waste disposal

Properly placed dust bins in college for waste disposal

Properly placed dust bins in college for waste disposal

V- Good practice

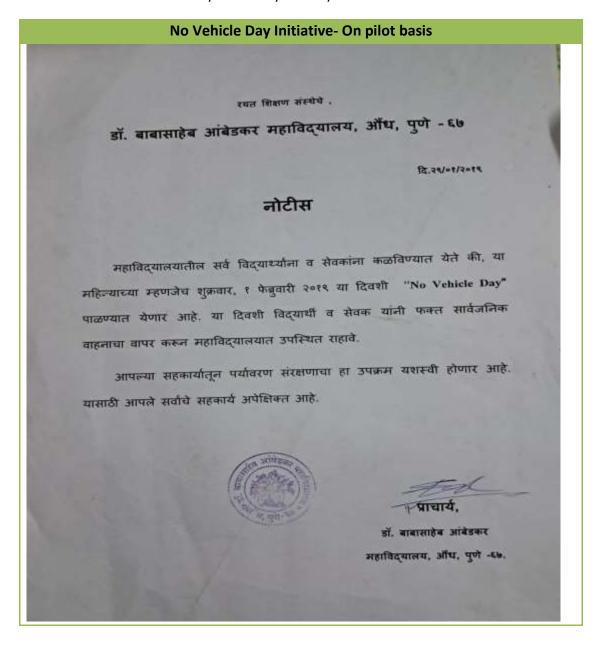
√- Good practice

Health safety

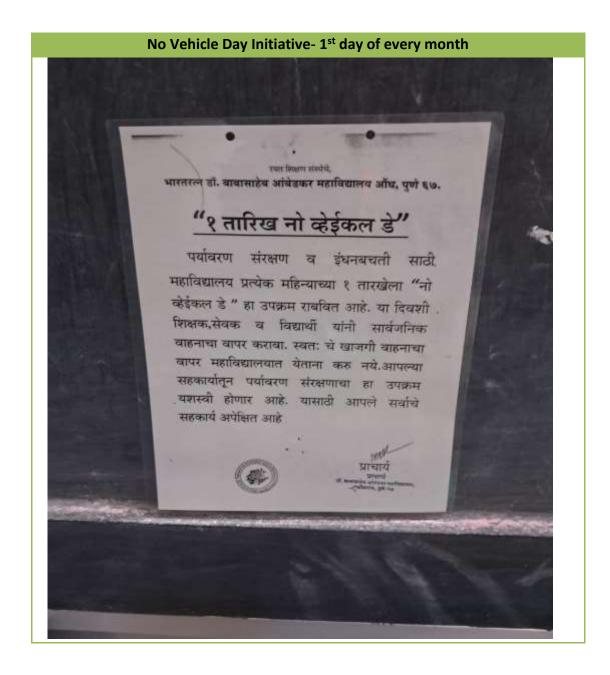
Conventional water taping system

College have currently conventional water taping system

College can adopts hands free water taping system. This saves the water and also good for personal health protection to avoid frequent hand touching to water taps.


GENERAL RECOMMENDATIONS

Sr No	Points	Actions need to be done regularly if not
1	Electrical panels doors	Closed the panel doors
2	Electrical wiring	Wiring should be properly dressed
3	Electrical wiring connection, hanging etc	Wiring connection should be appropriate and not any hanging of live connections
4	Electrical panel rooms	Electrical panel room should cleaned and remove all unwanted materials.
5	Fire extinguishers	Need to renew maintenance immediately after due date
	Fire hydrant system	College installed properly fire hydrant system with regular maintenance of it. Also college undertook safety drill for college staff.
6	Unwanted materials	Remove and placed at appropriate place or disposed of immediately.
7	Conventional water taping system	College can adopts hands free water taping system. This saves the water and also good for personal health protection to avoid frequent hand touching to water taps.



NO VEHICLE DAY INITIATIVE

- 1. Many of the college students and staff use the private or own vehicles to come college.
- 2. It contributes the CO2 emission due to burning of petrol or diesel in the vehicles.
- 3. College has taken initially on pilot basis "no vehicle day" but then after that college take initiative of "no vehicle day" on 1st day of every month.

SAVING DUE TO "No vehicle day" on every Saturday of week		
Number of vehicles in college premises	100	nos
Average running of vehicle	5	km/vehicle
Average fuel required	250	litres/day
Average cost of fuel	25000	INR/day
Number of Saturday per month	4	nos
Average fuel save	1000	litres/month
Average cost save	100000	INR/month
Average CO2 emission reduction per month	2.68	tonnes of CO2e
Average CO2 emission reduction per year	32.16	tonnes of CO2e

RECOMMENDATION

It is also recommended that college can be taken initiative of "No Vehicle Day" on every Saturday of the week

OTHER ENERGY EFFICIENT, GREEN, HEALTH, WASTE PRACTICES BY THE COLLEGE MANAGEMENT

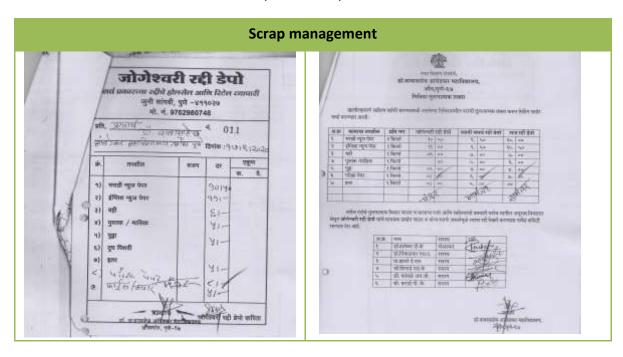
1. SOLID WASTE MANAGEMENT (SCRAPS LIKE PLASTIC, PAPER ETC)/ E-WASTE MANAGEMENT/ CLEANILNESS DRIVE/CAMPAIGN

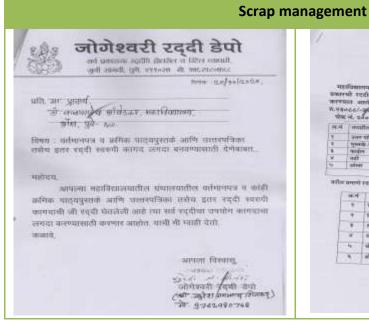
INTRODUCTION

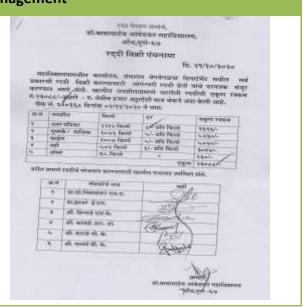
College have good policy for solid waste generated in the college like old newspapers, books, scrap boxes, etc.

E-WASTE MANAGEMNT

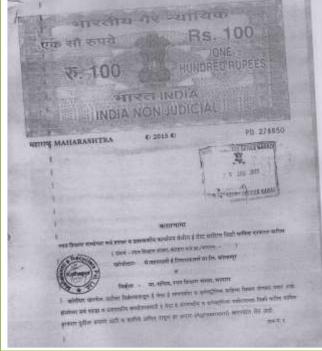
Electronic waste or e-waste describes discarded electrical or electronic devices. Used electronics which are destined for reuse, resale, salvage, recycling, or disposal are also considered e-waste. Informal processing of e-waste in developing countries can lead to adverse human health effects and environmental pollution.


Electronic scrap components, such as CPUs, contain potentially harmful components such as lead, cadmium, beryllium, or brominates flame retardants. Recycling and disposal of e-waste may involve significant risk to health of workers and communities in developed countries and great care must be taken to avoid unsafe exposure in recycling operations and leaking of materials such as heavy metals from landfills and incinerator ashes.


The environmental impact of the processing of different electronic waste components


E-Waste Component	Process Used	Potential Environmental Hazard
Cathode ray tubes (used in T√s, computer monitors, ATM, video cameras, and more)	Breaking and removal of yoke, then dumping	Lead, barium and other heavy metals leaching into the ground water and release of toxic phosphor
Printed circuit board (image behind table – a thin plate on which chips and other electronic components are placed)	De-soldering and removal of computer chips; open burning and acid baths to remove metals after chips are removed.	Air emissions and discharge into rivers of glass dust, tin, lead, brominated dioxin, beryllium cadmium, and mercury
Chips and other gold plated components	Chemical stripping using nitric and hydrochloric acid and burning of chips	PAHs, heavy metals, brominated flame retardants discharged directly into rivers acidifying fish and flora. Tin and lead contamination of surface and groundwater. Air emissions of brominated dioxins, heavy metals, and PAHs
Plastics from printers, keyboards, monitors, etc.	Shredding and low temp melting to be reused	Emissions of brominated dioxins, heavy metals, and hydrocarbons
Computer wires	Open burning and stripping to remove copper	PAHs released into air, water, and soil.

- 1. College has given solid waste generated like papers, metal scrap, garden waste etc to the authorised recycle for proper channelling the solid waste.
- 2. This helps to reduce the CO2 emission reduction due to recycling of the solid waste.
- 3. College also take initiative for e-waste recycling drive and MOU with different organaisations like Janwani, Pune, Mahalaxi E recyclers, Kolhapur etc



Scrap management

रवत शिक्षण संस्थेचे. डॉ. बाबासाहेब अंबेडकर महाविद्यालय, औंध, पुणे-67

E-West and Pistic West Mega Collection Drive अभियान कार्यक्रम अहवाल 2021

19/12/2021

हाँ, वाबासाहेव अवेहरूर महाविद्यानव, और राष्ट्रीय सेवा बोजना विभाग, जुमोन विचार नमेंच वनकाणी सन्या व पूर्व बहानवरणानिक्ष्या सङ्ग्रन विद्यामन हैं- बेटर व प्लास्तिक तेरर वेशा बमेक्शन हार्राल्यों अयोजन विनाम 19 /12/ 2021 रोजी समाधी 08 ते बुणारी 01 या वेद्या करण्यात्र आने होते. या बेटी जनवाणी नंत्र्येच्या बतीर और वेपीन विन्धी क्षितीनी येथे महाविद्यालकाशीन स्थानेवक हैं- तेरर व ज्लास्त्रिक केटर मोत्रा करण्या चीरता वांचत होते. या केटी वर पहलेले 1 TV, 2 (actop, 5 लीकर, 2 DVD ज्वेचर, 3 टेलिकोन लेट, 3 मोबाईन इंडकेंट, 3 शुप्त सेट, 1 द्वार्थी संस्थेच्या ज्योगी स्थान मेडम वांचा करण्यात आने, सदर 22 कुटुंबा कडून गोहा शानिन नावित्य जनकात्री मंत्र्यच्या ज्योगी स्थान मेडम वांचा सुदुर्व केली.

कार्यक्रम कारानी होम्यामाठी जनवामी शन्त्रंच्या न्योती वन्त्रव मेहम, पूर्ण म.न.चा. कर्मकारी, महाविकालवाचे शानार्य ही अन्य अंक्ष्णे, उत्त - प्राचार्य ही ग्रंज्य नगरकर वाचे महत्त्रपर्य जानारे. त्याच क्रमाचे कार्यक्रम अधिकारी हा. कृतीलकृषार गृजर, ही रेश्ना विवेकर राष्ट्रीय नेवा योजना विभागाचे 13 क्यांसंबद्ध यांनी परित्यम पेतारे.

Cleanliness drive

2. TREE PLANTATION, SOIL CONSERVATION ETC

INTRODUCTION

Tree-planting is the process of transplanting tree seedlings, generally for forestry, land reclamation, or landscaping purpose

In silviculture the activity is known as reforestation, or afforestation, depending on whether the area being planted has or has not recently been forested. It involves planting seedlings over an area of land where the forest has been harvested or damaged by fire, disease or human activity. Tree planting is carried out in many different parts of the world, and strategies may differ widely across nations and regions and among individual reforestation companies. Tree planting is grounded in forest science, and if performed properly can result in the successful regeneration of a deforested area. Reforestation is the commercial logging industry's answer to the large-scale destruction of old growth forests, but a planted forest rarely replicates the biodiversity and complexity of a natural forest.[citation needed]

Because trees remove carbon dioxide from the air as they grow, tree planting can be used as a geoengineering technique to remove CO

2 from the atmosphere. Desert greening projects are also motivated by improved biodiversity and reclamation of natural water systems, but also improved economic and social welfare due to an increased number of jobs in farming and forestry.

Canopies in tropical and temperate forests can be important habitats for many animals and plants. A dense canopy cover will let little light reach the ground and will lower temperatures. The canopy protects the ground from the force of rainfall and makes wind force more moderate

- 1. In the college premises there are number of trees which are maintained by the college.
- 2. College also took initiative of tree plantation with the help of students in the city area.

3. ENERGY EFFICIENT TECHNIUES

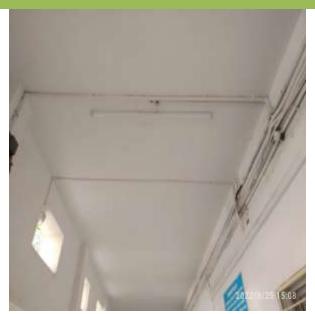
INTRODUCTION


Due to climate change and CO2 emission it is necessary to use energy efficient technologies. It helps to reduce the energy consumption without affecting the output. It also helps the reduced the CO2 emission reductions.

OSERVATION

- 1. College has taken step by step intuitive to implement various energy efficient equipment/technologies the college.
- 2. College has implemented various energy efficient equipment like LED lighting, Solar street lights, BEE star rating equipment's like refrigerator, Acs etc

Energy efficient equipment/techniques



BEE star rating AC

Energy efficient equipment/ techniques

BEE star rating refrigerator

LED lightings

REFERENCES AND STANDARDS

- 1. Bureau of Energy Efficiency (BEE), Ministry of Power, Government of India
- 2. Energy Conservation Building Code (ECBC), 2007, BEE, Government of India
- 3. Indian Green Building Council (IGBC), India
- 4. National Ambient Air Quality Standards, 2009, Central Pollution Control Board (CPCB), Government of India
- 5. The Noise (Pollution and Control) Rules, 2000 Government of India
- 6. Municipal Solid Wastes (Management and Handling) Rules, 2000, Government of India
- 7. Solid Waste Management Rules, 2015, Government of India
- 8. E-waste (Management) Rules, 2015, Government of Indi
- 9. Plastic Waste (Management and Handling) Rules, 2016, Government of India
- 10. National Electrical Code, 2011
- 11. Fire Extinguisher Standards, 2190-2010, Bureau of Indian Standards (BIS
- 12. IS 14489-1998, Code of Practice of Occupational and Health audit
- 13. Indian Society of Heating, Refrigerating and Air Conditioning Engineers (ISHRAE)

